
Energy-efficient Implantable Neural Decoder

Anil Bilgin, Cody Yang, Rebekah Zhao
Basic Asics

Department of Electrical and Computer Engineering
Carnegie Mellon University

Pittsburgh, Pennsylvania
Email: {abilgin,cyyang,biqiz}@andrew.cmu.edu

March 8 2018

Abstract—We propose to design a machine learning based
neural decoding chip with implantability and low power goals in
mind. Neural decoders are essential to brain machine interfaces
and implantable ones reduce risk of infection as well as increase
portability. Our design will be simulated both in MATLAB and
in Verilog-AMS and implemented using a 45nm CMOS process
in Cadence.

Keywords—Neural Decoder, Energy-Efficient, Extreme Learn-
ing Machine, Current Mirror Array

I. PROJECT DESCRIPTION

Brain-machine interfaces have become an increasingly pop-
ular topic over the past decade, facilitating the study of neural
prosthetics to assist disabled patients. In implantable neural
devices, electrodes are placed inside the brain to record neural
signals. Action potentials generated by neurons in the brain
are detected and converted into spike trains. Neural decoding
is performed subsequently to map spike train patterns to
motor intentions of the brain. State-of-the art neural decoding
generally relies on the neural implant to wirelessly transmit
data out of the brain and process data on PC. However, the
resulting power consumption is huge, and wireless transmitting
data requires signals to be samples, resulting in loss of data
as well.

In order to reduce power consumption and data loss, in
this project we will be designing a fully implantable neural
decoder with the architecture proposed by Chen et al [1]. In
the algorithm named Extreme Learning Machine (ELM) [2]-
[3], there is only one hidden layer. The advantageous part of
this algorithm is that it doesn’t require the inputs weights
to be trained, therefore these weights can be randomized
and not touched again. These input weights to this hidden
layer is implemented with fabrication mismatches in a current
mirror array to reduce power consumption. Therefore, the
full system consists of a DSP processor performing spike
detection and sorting and a Machine Learning Coprocessor
(MLCP) containing current mirror arrays to generate the input
weights. The hidden layer output is then fed back to the DSP
processor to produce the output. For demonstration purposes,
we will only implement the MLCP in 45nm GPDK. Inputs
to the MLCP are spike trains recorded from a monkey’s
premotor cortex. Outputs from the MLCP will be extracted
and processed in software.

II. DESIGN REQUIREMENTS

A. Decoding Accuracy

Our first design requirement is decoding accuracy of our
machine learning algorithm, the ELM, for the specific applica-
tion of decoding direction of cursor movements controlled by
a monkey. Chen et al [1] achieved 99.3% decoding accuracy
for detecting monkey’s finger movement types. We’re aiming
for the same decoding accuracy, since we know that this value
is achievable.

B. Power Consumption

The second design requirement is that our chip implemen-
tation consumes low power. Chen et al [1] managed to have
a total of 414 nW power consumption in their 128 channel
implementation of the MLCP (which doesn’t include the DSP).
This gives a power consumption per channel of 3.2 nW’s. We
looked into the average firing rate of our neural data and found
around 1.4 firings for every 100 milliseconds. Considering
the output of our DAC will be in the range of 2-126 nA’s
(explained later) and a VDD = 1V, we can estimate the average
power consumption per current mirror array to be 2.8 mW.
This means that we can estimate that we will have L x 2.8 nW
power consumption per channel, where L is the dimension of
our hidden layer. L is going to be tuned as a hyperparameter
in our design to give us the best possible decoding accuracy.

III. FUNCTIONAL ARCHITECTURE

A. Software Components

In a complete and readily implantable device, the neural
data would come from an electrode array sensor and be
received by the DSP, which performs preprocessing (eg. spike
detection, spike sorting, signal amplification, noise filtering,
etc) but for our purposes we have acquired an open-source
dataset to preprocess the data in MATLAB instead. We then
import the data into a Verilog testbench, as well as generate the
control signals needed by the chip (eg. clocking, reset, delay
selection, and signals for reducing power in components).

B. Components

• Window Counter: The window counter converts the
spike train input into a digital number representing
the frequency of spikes in each channel.



Fig. 1. Block Diagram

• Digital to Analog Converter: The digital to analog
converter (DAC) takes a digital input from the window
counter and outputs an analog current.

• Current Mirror Array: The current mirror array gener-
ates random weights through device mismatch during
the fabrication process. The mirroring and summing of
currents performs the dot product of input vector with
random weights to compute the hidden layer nodes’
inputs.

• Current Controlled Oscillator: The current controlled
oscillator (CCO) receives summed currents from the
current mirror array and outputs a pulse frequency
modulated signal with the frequency proportional to
the total current input.

IV. DESIGN TRADE STUDIES

In this section, we will discuss the detailed design require-
ments and testing plans for each above-mentioned components.

A. Window Counter

Fig. 2. Block Diagram for Window Counter

The window counter converts the spike train signal into
spike frequency values for the input vectors to the ELM
algorithm. The counter portion consists of an adder and a
register. Since the frequency of spikes is relatively slow, a
simple ripple-carry adder topology will suffice. With window
sizes of 20ms and maximum spike frequency of 600Hz, the

maximum number of spikes counted within one window is
12 spikes which corresponds to a 4-bit counter.

The rest of the window counter consists of a chain of
registers for storing most recent spike counts, two adders to
perform addition of new spike counts and subtraction of old
counts. Finally there is a 6-bit register for storing the current
window counter value. The main purpose of this part of the
window counter is to have a moving window average and
gain more information about the most recently fired neurons
by representing them as features in our input vector x.

B. DAC

Fig. 3. Circuit Schematic for DAC

The main function of the DAC is to convert the output
count from the window counter into analog currents. Since
the window counters have a 6-bit resolution, the DAC is also
6-bit wide. As shown in the figure above, the DAC uses a
pure CMOS W-2W topology. The load to each DAC is a
single current mirror array. To guarantee that the output of
each DAC is reliable enough, the most important testing factor
is differential nonlinearity (DNL). We would like to achieve a
DNL of within ±3 bits.

C. Current mirror array

Fig. 4. Circuit Schematic for Current Mirror Arrays

The current mirror arrays generate the random weights
from the input layer to the hidden layer through device
mismatch during the fabrication process. Each column of the
arrays applies random weights to the input vector, effectively
implementing dot product computation of each hidden layer
node’s input. The size of this matrix of current mirrors will be
determined by hyperparameters (namely the number of hidden
layer nodes) that maximizes the algorithm’s performance.



Fig. 5. Circuit Schematic for Current Controlled Oscillators

D. CCO

The CCO converts outputs of summed currents into a
frequency modulated signal with the frequency proportional
to input current. A counter is connected at the output of the
CCO to count the number of pulses. This way the current
is converted to digitally readable information. Implementation
of CCO is shown in the above figure. The capacitance of
Cint sets the oscillation frequency. Cf provides hysteresis
through positive feedback to maintain oscillation of circuit [1].
To test this circuit, we will input spike trains of frequency
ranging from 0 to 630 Hz. By taking the variance of the
counter measured for the same inputs, we can evaluate the
jitter performance. Because Chen et al [1] achieved jitter less
than 0.1%, this will be our initial target.

E. Software Algorithm Implementation

The software parts of our project is only at the very
beginning and at the very end. Our data is processed in
MATLAB and turned into proper spike trains for the input of
our circuit, which is going to be copied as a digital signal in
Verilog at the input stage to the window counters. In addition
to that, MATLAB code is going to be necessary to analyze
and train the weights (from the hidden layer to the output
layer). Our simulation of the CCO and the counters (on top of
the CCO’s) in Cadence is going to dump out files, which we
will then parse with MATLAB and proceed to use the rest of
the ELM algorithm to train our model and get our decoding
accuracy.

V. DESIGN WORK FLOW

There are four phases of our design process. These include
designing specifications, writing verilog-AMS to test and fi-
nalize specifications, replacing individual blocks with Cadence
circuit diagram, and eventually laying out the entire circuit.

• Design Specifications: in this phase, we started with
choosing the circuit topology of entire chip and then
chose the circuit topology for each component. After
simulating each circuit in Cadence with proper sizing,
we were able to understand the input and output range
of each component. This way we were able to decide
the specifications for the whole system.

• After deciding specifications, we will write verilog-
AMS to simulate them. Through testing we can eval-
uate if they meet our targets. If not we will adjust
specifications until eventually all targets are met.

• After finalizing design specifications, we will start
designing circuits in Cadence block by block and
incorporate them with verilog-AMS. When all blocks
are implemented in circuit, we test the final perfor-
mance of circuit.

• Finally, we layout the schematic we designed to make
our project a manufacturable chip. Even though the
45nm GPDK process is not actually manufacturable,
we would still make sure the chip is ready for fabri-
cation.

VI. PROJECT MANAGEMENT

A. Schedule

We divided up our work based on each team member’s
individual confidence in the given area, and tried to come up
with a timeline that’s shown in Figure 3. We’re mostly going
to be collaborating on everything together towards the latter
part of the project.

Fig. 6. Our schedule of the work load in between weeks.

B. Team Member Responsibilities

• Anil is going to be mainly responsible for the ELM
algorithm, how it works, its optimization using hyper-
parameters and performance metrics using the hidden
node outputs from the MLCP. He’s also going to be
responsible for implementing the current mirror array
in Cadence as well as contributing to Rebekah and
Cody’s efforts in building other Verilog components
in digital and parts such as the DAC and CCO in
Cadence. Towards the end of the project, everyone is
going to collaboratively work on putting the circuit
together and layout.

• Rebekah is going to be responsible in determining
design specs for most of the analog parts in this chip.
She’s primarily responsible for building of the DAC
and the CCO as well as helping Cody and Anil testing
other Verilog components and simulating circuits in
Cadence. Towards the end of the project, everyone is
going to collaboratively work on putting the circuit
together and layout.

• Cody is mainly responsible for designing and building
most of the digital parts in this chip. He’s primarily
responsible for designing and building the window



counter and the counters after the CCO. He’s going to
write Verilog-AMS to simulate certain circuit blocks
and finally going to collaboratively work on putting
the circuit together and laying it out.

C. Budget

Luckily this project doesn’t need any budget since it’s
fully a simulation based project. We don’t need to buy any
components since all of the design software we are going to
use is readily available to us.

D. Risk Management

There are several risk factors involved in this project, and
they can be summarized to:

• We may or may not be able to achieve the target
decoding accuracy of 99.3% in our design, simply
because we’re using a different dataset than Chen et al
[1] and our dataset may not be as classifiable as theirs.
This is why we’re looking into two different sets of
datasets at the same time, and trying to optimize both
of them. Decoding accuracy is also highly dependent
on hyperparameter optimization, which is also what
we’re currently working on in order to determine our
hyperparameters early on.

• Another concern is time management to complete this
project. Certain parts of the project may end up taking
a lot more time than we assigned them to in our
weekly schedule. We’re working as hard as we can
in order to keep up with this schedule, but there’s a
possibility that we may not be able to overcome a
certain part of the project that we’re not very familiar
with in its reserved time frame. If this seems to be
the case, we’re thinking of getting ideas about how
to approach the problem from our TA’s, professors
and other senior graduate students who have more
expertise in this field.

VII. RELATED WORK

While coming up with design ideas, we came across several
papers targeting similar functions.

• Rapoport et al: A Biomimetic Adaptive Algorithm and
Low-Power Architecture for Implantable Neural De-
coders [4]. This algorithm implements a continuous-
time artificial neural network with a bank of adap-
tive linear filters using analog computing. However,
no measurement results are published to support the
silicon viability of the architecture [1].

• Rapoport et al: Efficient Universal Computing Ar-
chitectures for Decoding Neural Activity [5]. This
paper proposes a very simple algorithm suitable for
highly scalable implantable systems as shown in the
figure below. The architecture implements a universal
computing machine emulating the dynamics of a net-
work of integrate-and-fire neurons, and requires only
counting. Neural decoding is done using only logic
operations. This algorithm was then implemented on
an FPGA and consumes 537 µW.

Fig. 7. Circuit Diagram of Algorithm in [4]

Fig. 8. Circuit Diagram of Algorithm in [5]

• Qiao et al: A reconfigurable online-learning spiking
neuromorphic processor comprising 256 neurons and
128K synapses [6]. This paper implemented a full-
custom mixed-signal VLSI device with neuromorphic
learning circuits that emulate the biophysics of real
spiking neurons and dynamic synapses for exploring
the properties of computational neuroscience mod-
els.This chip was fabricated on 180nm CMOS process
and occupies an area of 51.4mm2. It consumes a total
of 4 mW for typical experiments.

Compared to the above implementations, our design has
several advantages. First, it is more power efficient. The
power consumption for the MLCP is in the nano Watt range.
Secondly, the algorithm the MLCP implements is very simple
compared to that of [6]. Lastly, unlike [4], this algorithm has
been implemented and tested before, which makes it a more
reliable approach.

REFERENCES

[1] Y. Chen, E. Yao and A. Basu, ”A 128-Channel Extreme Learning
Machine-Based Neural Decoder for Brain Machine Interfaces,” in IEEE
Transactions on Biomedical Circuits and Systems, vol. 10, no. 3, pp.
679-692, June 2016.

[2] G. B. Huang, Q. Y. Zhu, and C. K. Siew, Extreme learning machines:
Theory and applications, Neurocomputing, vol. 70, pp. 489501, 2006.



[3] G. Huang, H. Zhou, X. Ding, and R. Zhang, Extreme learning ma- chine
for regression and multiclass classification, IEEE Trans. Sys- tems, Man,
Cybern. B, Cybern., vol. 42, no. 2, pp. 513529, Apr. 2012.

[4] B. Rapoport, W. Wattanapanitch, H. Penagos, S. Musallam, R. An-
dersen, and R. Sarpeshkar, A biomimetic adaptive algorithm and low-
power architecture for implantable neural decoders, in Proc. 31st Annu.
Int. Conf. IEEE EMBS, 2009.

[5] Qiao, Ning et al. A Reconfigurable on-Line Learning Spiking Neuromor-
phic Processor Comprising 256 Neurons and 128K Synapses. Frontiers
in Neuroscience 9 (2015): 141. PMC. Web. 9 Mar. 2018.


